INTERNATIONAL JOURNAL OF ADVANCED RESEARCH VOL. 4 (1), JUNE, 2024
IN MULTIDISCIPLINARY STUDIES (IJARMS) ISSN 2756-4444
E-ISSN 2756-4452

ANALYZING VULNERABILITIES IN NETWORK PROTOCOLS USING WIRESHARK: A CASE
STUDY ON HTTP AND HTTPS

BY

Idris Olanrewaju Ibraheem, Saka Kamil Kayode & Nurudeen Olawale Ibrahim
Al-Hikmah University llorin Nigeria

Abstract

In the digital age, securing network communications is critical, with HTTP and HTTPS protocols being integral to
web data transfer. Despite HTTPS providing enhanced security through TLS encryption, both protocols exhibit
vulnerabilities that can be exploited by attackers. This study explores how Wireshark, a powerful network protocol
analyzer, can be utilized to detect and mitigate these vulnerabilities. Through the examination of HTTP traffic and the
decryption of HTTPS traffic, the research identifies common weaknesses such as session hijacking, man-in-the-middle
attacks, and information leakage. The analysis includes inspecting the TLS handshake process and the security of
various cipher suites, highlighting the potential risks associated with outdated or improperly configured protocols. A
methodology involving the capture and detailed analysis of network traffic using Wireshark is presented, supported
by case studies on several websites. The findings underscore the necessity of robust encryption practices, regular
security audits, and proper certificate management to enhance the security of network communications. By adopting
these strategies, organizations can significantly reduce their exposure to potential vulnerabilities, ensuring the
protection of sensitive information and maintaining the trust of users.

Keywords: Cyber Attacks, Network Security, Wireshark, Transport Layer Security, HTTP, HTTPS
Introduction

In today's digital age, the security of network communications is paramount. HTTP and HTTPS are widely used
protocols for data transfer on the web, but they are not without vulnerabilities. Wireshark, a powerful network protocol
analyzer, offers robust tools for identifying and mitigating these security issues. This article examines how Wireshark
can be employed to analyze vulnerabilities in HTTP and HTTPS protocols, providing insights into the potential risks
and the methods to enhance network security (Patel et al, 2021). The widespread use of HTTP as a protocol for web
communication has made it a prime target for cyber-attacks. Despite the advent of more secure protocols like HTTPS,
HTTP remains prevalent, especially in older systems and legacy applications (Muraleedharan, et al, 2020). Analyzing
HTTP traffic to identify vulnerabilities is crucial for understanding potential threats and mitigating risks. Wireshark,
a powerful network protocol analyzer, provides extensive capabilities for examining HTTP traffic and uncovering
common vulnerabilities Patel et al, (2021). HTTP (Hypertext Transfer Protocol) is the foundation of data
communication on the World Wide Web, known for its simplicity and speed but lacking inherent security measures.
HTTPS (HTTP Secure) builds on HTTP by adding a layer of security via TLS (Transport Layer Security), encrypting
data to prevent eavesdropping and tampering (Danezis, 2009). Despite these protections, both protocols can exhibit
vulnerabilities due to improper implementation or configuration, making them attractive targets for attackers.
Wireshark allows security professionals to capture and analyze traffic in these protocols, helping to uncover and
address potential security flaws (Lavrenovs, & Meldn, 2018).

This study aims to:

i identify and analyze common vulnerabilities in HTTP traffic using Wireshark.
ii. examine the TLS handshake process in HTTPS and identify potential weaknesses.
iii. demonstrate the decryption of HTTPS traffic in Wireshark for vulnerability analysis.
iv. propose mitigation strategies for the vulnerabilities identified in HTTP and HTTPS protocols.

(uARMS) 737

INTERNATIONAL JOURNAL OF ADVANCED RESEARCH VOL. 4 (1), JUNE, 2024
IN MULTIDISCIPLINARY STUDIES (IJARMS) ISSN 2756-4444
E-ISSN 2756-4452

Literature Review

Recent studies conducted by Banerjee et al, (2010) have demonstrated the effectiveness of Wireshark in network
traffic analysis and security assessment. Wireshark's capabilities in detecting security anomalies, such as abnormal
port usage and rogue hosts, are critical for network defense. In a study titled Performance and Security Evaluation of
TLS, DTLS and QUIC Security Protocols by Gaminara, (2022) highlights Wireshark's role in decrypting HTTPS
traffic, revealing potential misconfigurations and cryptographic weaknesses during the TLS handshake process.
Research by Toolify.ai underscores the tool's utility in extracting clear text credentials from HTTP traffic, emphasizing
the need for secure communication protocols. HTTPS (HyperText Transfer Protocol Secure) is the secure version of
HTTP, achieved by layering HTTP on top of the SSL/TLS protocol, providing encrypted communication and secure
identification of a network web server. However, vulnerabilities such as misconfigured servers, outdated protocols,
and weak encryption can undermine this security (Aslan et al, 2023).

Furthermore, in a study titled Proving the TLS handshake secure (as it is) by Béguelin et al (2014), the TLS (Transport
Layer Security) handshake is fundamental to the security of HTTPS, ensuring encrypted communication between
clients and servers. This process involves several steps, including the exchange of cryptographic keys and the
establishment of a secure connection. However, despite its critical role in secure communications, the TLS handshake
has potential weaknesses that need to be understood and mitigated. TLS 1.2, which was widely used before the
introduction of TLS 1.3, has several known vulnerabilities primarily due to its flexibility and support for older, less
secure cryptographic algorithms. The RSA key exchange algorithm used in TLS 1.2 is a notable example. It lacks
Perfect Forward Secrecy (PFS), meaning that if an attacker obtains the server's private key, they can decrypt past
sessions.

The primary weakness in the TLS 1.2 handshake process lies in the use of outdated cryptographic algorithms and
insufficient default configurations. For instance, the RSA key exchange, although popular, uses the same key pair for
both authentication and encryption of the pre-master secret. This dual usage can lead to significant security risks if the
private key is compromised. Attacks such as BEAST (Browser Exploit Against SSL/TLS) and Lucky 13 exploit
vulnerabilities in the CBC (Cipher Block Chaining) mode of encryption used in TLS 1.2 Béguelin et al (2014).
However, a study titled A cryptographic analysis of the TLS 1.3 handshake protocol by Dowling et al (2021), TLS
1.3, released in 2018, addresses many of these vulnerabilities by removing support for older algorithms and
streamlining the handshake process. It reduces the handshake to a single round trip, thereby minimizing the attack
surface. TLS 1.3 also mandates the use of forward secrecy, ensuring that session keys cannot be compromised even if
the server's long-term key is compromised. This is achieved using ephemeral Diffie-Hellman (DHE) or Elliptic Curve
Diffie-Hellman (ECDHE) key exchanges, which generate unique keys for each session. Despite these improvements,
TLS 1.3 is not without its potential weaknesses. The complexity of the protocol and the need for widespread adoption
can introduce implementation flaws. Additionally, while TLS 1.3 enhances security, it still relies on the security of
the underlying public key infrastructure (PKI). If certificate authorities (CAs) are compromised, the entire chain of
trust can be undermined.

Moreso, a study by (Dodiya & Singh 2022), titled Malicious Traffic analysis using Wireshark by collection of
Indicators of Compromise in the International Journal of Computer Applications highlights the effectiveness of
Wireshark in identifying Indicators of Compromise (IoC) within HTTP traffic. The research demonstrates how packet
analysis can uncover nefarious activities such as unauthorized data access and malware. Similarly, Silvestre et al,
(2023) explores the dual-edged nature of packet sniffing with tools like Wireshark. It underscores the potential for
both security enhancement and misuse, emphasizing the need for ethical and legal frameworks to govern the use of
such tools. The importance of analyzing HTTP traffic to identify vulnerabilities is underscored by Patel et al (2021),
who successfully detected cyberattacks in real-time by monitoring and analyzing network traffic. This is further
emphasized by Tran (2018), who developed an application for monitoring and analyzing HTTP communications to
detect threats. However, the potential risks of HTTP traffic analysis are highlighted by Danezis (2009) who discussed
the information that can be inferred from HTTP transactions over TLS. To address these risks, (Huang et al, 2024)

(uARMS) 738

INTERNATIONAL JOURNAL OF ADVANCED RESEARCH VOL. 4 (1), JUNE, 2024
IN MULTIDISCIPLINARY STUDIES (IJARMS) ISSN 2756-4444
E-ISSN 2756-4452

recommended optimizing the use of web vulnerability standards, such as OWASP Top 10 and CWE, to ensure a higher
level of security.

Common Vulnerabilities in HTTP Traffic

HTTP, being a plain text protocol, is susceptible to various attacks that can compromise data integrity, confidentiality,
and availability. Key vulnerabilities often identified in HTTP traffic as described by Muraleedharan et al (2020) which
include:

Session Hijacking: Attackers can exploit the lack of encryption in HTTP to capture session cookies and hijack user
sessions. This vulnerability is particularly prevalent in environments where HTTP is used without proper session
management techniques.

Man-in-the-Middle (MitM) Attacks: Without encryption, HTTP traffic can be intercepted and altered by attackers
positioned between the client and server. This can lead to data tampering and unauthorized access to sensitive
information.

Information Leakage: HTTP headers and URLs can inadvertently expose sensitive information such as software
versions, internal IP addresses, and other configuration details that can be exploited by attackers to map out the
network.

Cross-Site Scripting (XSS): HTTP-based applications often fail to properly sanitize user inputs, leading to the injection
of malicious scripts. These scripts can be executed in the context of the user's browser, leading to data theft and session
hijacking.

Methodology
Using Wireshark to Analyze HTTP Vulnerabilities

Wireshark provides a robust platform for capturing and analyzing HT TP traffic. By inspecting packet details, security
analysts can identify patterns and signatures indicative of the vulnerabilities. Decrypting HTTPS traffic in Wireshark
is a powerful technique for analyzing the security of encrypted communications. HTTPS encrypts data using TLS
(Transport Layer Security) to protect it from interception and tampering. However, for security analysis and
troubleshooting, it is often necessary to decrypt this traffic. This section provides an overview of the process and
potential vulnerabilities identified through this method.

Decrypting HTTPS traffic for vulnerability analysis is a critical task in cybersecurity, allowing analysts to inspect and
understand encrypted communications. This process is essential for identifying potential security issues within the
traffic, such as weak cipher suites, improper certificate validation, or the exposure of sensitive information. The use
of Wireshark to decrypt HTTPS traffic leverages the ability to capture session keys, enabling the decryption of
encrypted packets. This method is particularly useful for diagnosing problems and verifying the security of
applications that rely on HTTPS.

(uARMS) 739

INTERNATIONAL JOURNAL OF ADVANCED RESEARCH VOL. 4 (1), JUNE, 2024
IN MULTIDISCIPLINARY STUDIES (IJARMS) ISSN 2756-4444
E-ISSN 2756-4452

(Install Wireshark|

(Capture HITPS Traffic|

(Setup Key Log File]

(Decrypt HITPS Traffic]

(Analyze Declypted Traffic)

(Identify Vulherabilities)

Figure 1: Methodological Process

The image depicts a flowchart outlining the steps involved in capturing and analyzing HTTPS traffic using Wireshark.
The process consists of the following sequential steps.

The use of Wireshark to capture HTTPS traffic from the network, configuration a key log file to capture encryption
keys for HTTPS decryption, utilization of the key log file in Wireshark to decrypt the captured HTTPS traffic.
Examine the decrypted traffic to understand the data being transmitted and identify for potential security
vulnerabilities within the decrypted traffic.

Table 1: Websites checked for vulnerabilities

‘Websites Security Status Packets
website 1 Weak cipher 79
website 2 Secure 767
website 3 Secure 236
website 4 Secure 311
website 5 Improved Security 359
website 6 Outdated and less secure 119
website 7 Insecure 197
website 8 Improved Security 401
website 9 Secure 215
website 10 Improved Security 602
website 11 Improved Security 436
website 12 Improved Security 278

(mArms) 740

INTERNATIONAL JOURNAL OF ADVANCED RESEARCH VOL. 4 (1), JUNE, 2024

IN MULTIDISCIPLINARY STUDIES (IJARMS) ISSN 2756-4444
E-ISSN 2756-4452
website 13 Insecure 327
website 14 Outdated and less secure 76
website 15 Insecure 131
website 16 Outdated and less secure 81
website 17 Weak cipher 83

A total number of 17 websites were analyzed based on SSLv2, SSLv3, TLSv1, TLSv2, TLSv3 protocols with the
security status metrics being insecure, weak cipher, outdated and less secure, secure, and improved security, a total
number of 4696 packets were captured, the figures of packets captured on each protocol based on the security status
of the website are depicted using a bar chart.

sslkeyslog.log

File Edit View

SSL/TLS secrets log file, generated by NSS

CLIENT_HANDSHAKE_TRAFFIC_SECRET 5c¢12948:7 " " ¢ WS T 0TI L 2beeadf899a859e527F7b653a4
d68d6be2a88d6b400b3dced1c37d71756a3db428a4db9432dab4fe2420d7a2ae

SERVER_HANDSHAKE_TRAFFIC_SECRET 5c129%sa_u Siamuue. 1 T047AcA252T58e6eeadf899a859e527F7b653a4
0eB54fc176b29899059b0ad3tuu i veusvoo oL 1T OFd4F0c557101F69cd9b

CLIENT_HANDSHAKE_TRAFFIC_SECRET 252cf6028Z_____I____ 74623134ff22c4738efbcBab4c7dd83d0ce96385
8b6e88dd8cbbdf@31ab77e70d2757ae@0d70fabbb2_ v ooc, o T2 1fb

SERVER_HANDSHAKE_TRAFFIC_SECRET 252cfbucc-o_coccooCC. TT03f34F122c4738efbcBab4c7dd83d0ce96385
471e9a2bb55f86041d6cc@b139e1202a329322560e5c352e5a5c8465e2ff5ce8

CLIENT_HANDSHAKE_TRAFFIC_SECRET 8b7c1f4377 77,542 Sucsnanaa s M24871e5a9fcc00f30c7edefbd2285
1f1f2519a331ed69dc2fcc78a76aa871920d9568181455e612141b496879dd4

SERVER_HANDSHAKE_TRAFFIC_SECRET cu,cii=oocc-i 5d37f17de9cfala3d288424871e5a9fcc00F30c7edefbd2285
ef78625d735ec9990c3€ -56889d1cfd778156789f504eabb80d71f1

CLIENT_RANDOM 6706cefbf6b7b i oo l.C0 S L0 11c51876c4bffa588
1a796e9140f596cd904b893a26e0b51bdc8dbl2ac6ebe2155af894da876f7e4a8188710aacfbdaac53cccb36cPaaeb12
CLIENT_TRAFFIC_SECRET_@ L___ 077225548-3353hf92374623f34557700 |, L fbcPab4c7dd83d0ce96385
Padd68fecdf7525b479c8ea74d4500d313d2a260 - _ot18f71c5e3

SERVER_TRAFFIC_SECRET_@ 252cf60283%__C 77 0227462262 4££22c4738efbc@ablc7dd83d0ce96385
b734ebbf636c12c52e063c4bc4212b3278¢ T SIATIANT AT U U7216e

EXPORTER_SECRET 252cf602835b68¢ B ST T "77%efbcPab4c7dd83d0ce96385
9a2c8b4ael@f8e33ed@7cef593a 7 (nffpt 0 AR CRar 200N 0T 103394

CLIENT_TRAFFIC_SECRET_© 5c1294 100222379d7Ac2E0 070 7 adf899a859e527F7b653a4
362dclca87eaef5192d74f525e2a5 CoCUnusauviasecvziar et su33

SERVER_TRAFFIC_SECRET_@ 5c12948a5dcb4199i .~cocccs. 0077 0 77 58ebeeadf899a859e52717b653a4
af3a3al0f7187e9ba55e9a0a20591b8726avcs i uus s suva - _2c9efbd299

EXPORTER_SECRET 5c12948a5dcb4199f146a2a.. . vevu Jeeadf899a859e527f7b653a4
43c03cf16bB56eba72758692e86cea2 __. (/4T ZTA51D5CET 1ea. - 84

CLIENT_HANDSHAKE_TRAFFIC_SECRET 24 L. _<Jzavuuvuve- | 172297d984920683fac624f4360beabl65add
eebb3aed533e1442c7e940678af55b70F . 242dad

SERVER_HANDSHAKE_TRAFFIC_SECRET 24cousoscsvove-l TI00164202422897d984920683fac6244360beab065add
1d95d0dc71e7558b4a91582e6b" vieo T2 24R16684c68a6a65

CLIENT_TRAFFIC_SECRET_© 24c00589 " 7 777" 4920683fac62414360beabl65add
832129b5e8d3ebf104b69db8beald355cOe~vvoosT 2/ dvva1ac . - i

Ln1, Col M 2,819,995 characters 100% Windows (CRLF) UTF-8

Figure 2: SSL Key Log

The SSL key log image shows the content of an SSL/TLS secrets log file generated by NSS (Network Security
Services). The file was used for decryption of traffic and further analysis using Wireshark.
The key elements of the log file are

(warms) 741

INTERNATIONAL JOURNAL OF ADVANCED RESEARCH VOL. 4 (1), JUNE, 2024
IN MULTIDISCIPLINARY STUDIES (IJARMS) ISSN 2756-4444

E-ISSN 2756-4452

CLIENT_HANDSHAKE_TRAFFIC_SECRET: These secrets are used during the TLS handshake to encrypt and
authenticate the initial messages between the client and the server.

SERVER_HANDSHAKE_TRAFFIC_SECRET: These secrets are similar to the client handshake traffic secrets but
are used by the server.

CLIENT_TRAFFIC_SECRET_0 and SERVER_TRAFFIC_SECRET _0: These secrets are used for the encryption
and authentication of the application data after the handshake is complete.

CLIENT_RANDOM: This is a random value generated by the client and is part of the initial handshake process to
ensure the security of the session.

EXPORTER_SECRET: This is used to derive additional keys for other purposes during the session.
Each line in the file corresponds to a different secret or random value used in the SSL/TLS session, allowing tools

like Wireshark to decrypt the encrypted traffic if the log file is provided. During network traffic analysis, this log file
is imported into Wireshark to decrypt and inspect the encrypted data packets.

857
88016 490, 808561
85028 490, 527170
88857 498, 868415
8877 498.387132
88885 498,918823
85160 498,336313
88102 450.938215
88121 499, 955551
5143 408.334857

86152 490, 996200

35

Figure 3: SSLv2 Without Cipher Suite

The figure 3, showcases the process of decrypting and analyzing the captured HTTP/HTTPS traffic within Wireshark.
The view emphasizes the encrypted nature of the traffic, consistent with the goal of examining network security and
decrypting HTTPS data for further analysis. The analysis further shows the selected packet has no cipher suite which
makes it an unsecure packet which can be intercepted and redirected for an attack.

(UARMS) 742

INTERNATIONAL JOURNAL OF ADVANCED RESEARCH VOL. 4 (1), JUNE, 2024

IN MULTIDISCIPLINARY STUDIES (IJARMS) ISSN 2756-4444
E-ISSN 2756-4452

£ capture2.pcapng

File Edit) Capture Analyze Statistics Telephon

ADAC MmERRE Re=>=1 8

Source Destination otocal Length Info
3901 6.362735 108.159.102.27 1494 Continuation Data
3915 6.364116 168.159.102.27 1494 Continuation Data
3916 6.364116 108.159.102.27 .0.0. TLSV1.3 469 Continuation Data
3917 6.364116 102.132.101.10 TLSV1.Z 1446 [TLS segment of a reassembled PDU
3920 6.364702 102.132.101.1@ HTTPZ 1446 DATA[1
3921 6.364702 102.132.101.10 .8.0. TLSVI.3 1446 [TLS segment of a reassembled PDU
3935 6.369403 162.132.101.160 TLSVI.3 1446 [TLS segment of a reassembled PDU
3936 6.369403 162.132.101.160 HTTP2 1446 DATA[1
3938 6.370213 102.132.101.10 TLSV1.3 1446 [TLS segment of a reassembled PDU
3956 6.379634 102.132.101.10 TLSV1.Z 1446 [TLS segment of a reassembled PDU
3959 6.380193 102.132.101.1@ HTTPZ 1446 DATA[1
3960 6.380867 102.132.101.10 TLSVI.3 1446 [TLS segment of a reassembled PDU
3967 6.382188 102.132.101.10 HTTP2 1257 DATA[1] (application/x-javascript
3980 6.412795 16.0.8.8 216.58.223.238 QUIC 1292 Initial, DCID-cfc4284891fbe9d3, PKN: 1, CRYPTO
3981 6.412872 10.6.0.8 216.58.223.238 QuUIC 1292 Initial, DCTD=cfcd284091fbedd3, PKN: 2, CRYPTO, CRYPTO, PING, PADDING, PING, PING, CRYPTO, PADDING, CRYPTO, PADDING, PING, CRYPTO
3988 6.432422 216.58.223.238 QUIC 1202 Initial, SCID=efc4284001fbedd3, PKN: 2, CRYPTO, PADDING
3989 6.432422 216.58.223.238 QuUIC 1292 Initial, SCID=efc4284991fbegds, PKN: 3, CRYPTO, PADDING
4818 6.487011 10.9.8.8 .58.223.238 TLSV1.3 1875 Client Hello (SNI-www.youtube.com
| 4020 6.487722 18.165.168.7 HTTP2 1494 HEADERS[1]: 208 OK, DATA[1
| 4034 6.439472 18.165.168.7 HTTP2 1494 DATA[1], DATA[1], DATA[1
| 4860 6.527610 216.58.223.238 QUIC 1292 Handshake, SCID=efc4284891fbedd3, PKN: 4, CRYPTO
| 4861 6.527610 216.58.223.238 QUIC 1292 Handshake, SCID=efc4284091fbedd3, PKN: 5, CRYPTO
| 4062 6.527610 216.58.223.238 QuIC 1292 Handshake, SCID=efc4284091fbedds, PKN: 6, CRYPTO
| 4065 6.528118 216.58.223.238 HTTP3 887 Protected Payload (KP@), PKN: 8, STREAM(3), SETTINGS
| 4067 6.529382 10.9.8.8 23.238 HTTP3 205 Protected Payload (KP®), DCID=efc4284891fbegd3, PKN: 18, ACK, STREAM(2), SETTINGS
| 4073 6.543143 216.58.223.238 QUIC 987 Protected Payload (KP®), PKN: 12, CRYPTO
| 4145 6.600470 18.165.168.7 TLSV1.3 1484 Application Data
| 3] ication Data

ver Hello

Figure 4: TLSv1.3 Cipher Decryption

As seen in figure 3, which showcases the process of decrypting and analyzing the captured HTTP/HTTPS traffic
within Wireshark. The view emphasizes the encrypted nature of the traffic, consistent with the goal of examining
network security and decrypting HTTPS data for further analysis. The analysis further shows the selected packet has
cipher suite which makes it a secure packet which will be hard to be intercepted and redirected for an attack. It further
shows the communication between the server and client and the changing of cipher specification, which shows it is a
secured connection.

(uARMS) 743

INTERNATIONAL JOURNAL OF ADVANCED RESEARCH VOL. 4 (1), JUNE, 2024
IN MULTIDISCIPLINARY STUDIES (IJARMS) ISSN 2756-4444
E-ISSN 2756-4452

HTTP/HTTPS Security Vulerabilty

2500 2079

2000 1524
1500
1000 655 B Packets
500 162 276
, > -

SSLv2 SSLv3 TLSvl TLSv1.2 TLSv1.3

Packets

Protocols

Figure 5: HTTP/HTTPS security vulnerability chart

The image as depicted in figure 5 compares the number of packets associated with different security protocols which
are SSLv3, SSLv2, TLSv], TLSv1.2, and TLSv1.3. The increasing number of packets from SSLv3 to TLSv1.3 can
be interpreted as an indicator of the evolving landscape of HTTP/HTTPS security, where newer protocols, despite
being more secure, also attract more attention and scrutiny from security researchers. The older protocols like SSLv2
and SSLv3 have fewer packets, likely because they are less used today due to their known vulnerabilities and have
been largely replaced by more secure versions of TLS. The significant jump in packets from TLSv1.2 to TLSv1.3
reflects the adoption and ongoing analysis of the latest TLS protocol.

The bar chart highlights the security vulnerabilities associated with different HTTP/HTTPS protocols, showing an

upward trend in the number of packets as the protocols evolve. This could reflect both the increasing security measures
and the extensive use and examination of these protocols in modern secure communications.

Packets Based on Security Status

Weak cipher

Security Status

Outdated and less secure

Insecure

o

500 1000 1500 2000 2500
Packets

Figure 6: Packets based on security status

(uArms) 744

INTERNATIONAL JOURNAL OF ADVANCED RESEARCH VOL. 4 (1), JUNE, 2024
IN MULTIDISCIPLINARY STUDIES (IJARMS) ISSN 2756-4444
E-ISSN 2756-4452

The image provided in figure 6, categorizes packets according to their security status from insecure, outdated and less
secure, weak cipher, secure, and improved security. The chart clearly shows a progression in the number of packets
from insecure to improved security statuses, with the highest counts in the more secure categories. This distribution
suggests that most of the network traffic is adopting secure and improved security measures, with fewer packets
remaining in the less secure or outdated categories. The presence of packets in the insecure and outdated categories
indicates that while security is improving, there are still areas that require attention and updates.

The bar chart provides an insightful representation of the distribution of packets based on their security status. It
highlights the ongoing trend towards improved security in network communications, while also indicating the
necessity to address the remaining instances of insecure and outdated protocols to enhance overall security.

Mitigating HTTPS Traffic Vulnerabilities

To effectively mitigate vulnerabilities in HTTPS traffic, it is essential to use robust encryption practices and proper
configuration of security protocols. One of the primary steps is to ensure the use of strong, modern cipher suites.
Outdated or weak cipher suites can be easily compromised, so configuring your servers to support only the latest, most
secure cipher suites is critical. Regularly updating your TLS configurations and disabling support for deprecated
versions of protocols like SSL and older TLS versions is also necessary. Additionally, implementing HTTP Strict
Transport Security (HSTS) ensures that browsers always connect via HTTPS, preventing protocol downgrade attacks
and enhancing overall security. Another key aspect of mitigation involves proper certificate management. This
includes ensuring that all certificates are issued by trusted Certificate Authorities (CAs) and that they are regularly
monitored and renewed before expiration. Implementing Certificate Pinning can further enhance security by binding
a certificate or public key to specific servers, which helps to prevent MITM attacks. Clients should always validate
server certificates, and organizations should use Online Certificate Status Protocol (OCSP) and Certificate Revocation
Lists (CRL) to check the validity of certificates in real-time. By focusing on these strategies, you can significantly
reduce the risk of vulnerabilities in HTTPS traffic.

Summary

The study examines the vulnerabilities present in HTTP and HTTPS protocols, emphasizing the critical role of network
security in the digital age. It utilizes Wireshark, a network protocol analyzer, to identify and analyze common security
issues such as session hijacking, man-in-the-middle attacks, and information leakage. The study highlights the
importance of the TLS handshake process, and the risks associated with outdated or misconfigured cipher suites in
HTTPS. Through traffic capture and analysis, the research underscores the necessity of robust encryption practices,
regular security audits, and proper certificate management to enhance the security of network communications.
Ultimately, the findings advocate for proactive measures to protect sensitive information and maintain user trust in
online environments.

Conclusion

Ensuring the security of HTTPS traffic is crucial for protecting sensitive information transmitted over the internet. By
adopting strong encryption practices, properly managing certificates, and staying vigilant with regular security audits
and updates, organizations can significantly reduce their exposure to potential vulnerabilities. Educating all
stakeholders about the importance of security measures and keeping systems up to date are equally important. By
following these recommendations and implementing comprehensive security strategies, you can create a robust
defense against the myriad of threats targeting HTTPS communications, safeguarding your data and maintaining the
trust of your users.

(uArRmS) 745

INTERNATIONAL JOURNAL OF ADVANCED RESEARCH VOL. 4 (1), JUNE, 2024
IN MULTIDISCIPLINARY STUDIES (IJARMS) ISSN 2756-4444
E-ISSN 2756-4452

Recommendations

Conduct frequent security audits and penetration tests to identify and address vulnerabilities in your HTTPS
configurations and the use of automated tools for initial assessments and manual testing for more in-depth analysis.
Implementation of robust patch management process to ensure that all software, including web servers, libraries, and
dependencies, are kept up to date with the latest security patches. Employing the IDPS to monitor network traffic and
detect potential threats. Employ anomaly-based detection to identify unusual patterns indicative of a security breach.

References

Aslan O, Aktug SS, Ozkan-Okay M, Yilmaz AA, Akin E. (2023): A comprehensive review of cyber security
vulnerabilities, threats, attacks, and solutions. Electronics. 2023 Mar 11;12(6):1333.
https://doi.org/10.3390/electronics12061333

Banerjee, U., Vashishtha, A., & Saxena, M. (2010): Evaluation of the Capabilities of WireShark as a tool for Intrusion
Detection. International Journal of computer applications, 6(7), 1-5. https://doi.org/10.5120/1092-1427

Bhargavan, K., Fournet, C., Kohlweiss, M., Pironti, A., Strub, P. Y., & Zanella-Béguelin, S. (2014): Proving the TLS
handshake secure (as itis). In Advances in Cryptology—CRYPTO 2014: 34th Annual Cryptology Conference,
Santa Barbara, CA, USA, August 17-21, 2014, Proceedings, Part Il 34 (pp. 235-255). Springer Berlin
Heidelberg. https://doi.org/10.1007/978-3-662-44381-1 14

Danezis, G. (2023). Traffic Analysis of the HTTP Protocol over TLS.

Dodiya, B., & Singh, U. K. (2022): Malicious Traffic analysis using Wireshark by collection of Indicators of
Compromise. International Journal of Computer Applications, 183(53), 1-6.
https://doi.org/10.5120/ijca2022921876

Dowling, B., Fischlin, M., Glnther, F., & Stebila, D. (2021): A cryptographic analysis of the TLS 1.3 handshake
protocol. Journal of Cryptology, 34(4), 37. https://doi.org/10.1007/s00145-021-09384-1

Gaminara, A. (2022): Performance and Security Evaluation of TLS, DTLS and QUIC Security Protocols (Doctoral
dissertation, Politecnico di Torino). http://webthesis.biblio.polito.it/id/eprint/2556 1

Huang, J., Zhang, J., Wang, Q., Han, W., & Zhang, Y. (2024): Exploring Advanced Methodologies in Security
Evaluation for LLMs. arXiv preprint arXiv:2402.17970. https://doi.org/10.48550/arXiv.2402.17970

Lavrenovs, A., & Meldn, F. J. R. (2018): HTTP security headers analysis of top one million websites. In 2018 10th
International Conference on Cyber Conflict (CyCon) (pp. 345-370). IEEE.
https://doi.org/10.23919/CYCON.2018.8405025

Muraleedharan, N., Thomas, A., Indu, S., & Bindhumadhava, B. S. (2020): A Traffic Monitoring and Policy
Enforcement Framework for HTTP. In 2020 Third ISEA Conference on Security and Privacy (ISEA-ISAP)
(pp. 81-86): IEEE. https://doi.org/10.1109/ISEA-ISAP49340.2020.235004

Muraleedharan, N., Thomas, A., Indu, S., & Bindhumadhava, B. S. (2020): A Traffic Monitoring and Policy
Enforcement Framework for HTTP. In 2020 Third ISEA Conference on Security and Privacy (ISEA-ISAP)
(pp. 81-86). IEEE.

Patel, A., Schenk, T., Knorn, S., Patzlaff, H., Obradovic, D., & Halblaub, A. B. (2021): Real-time, simulation-based
identification of cyber-security attacks of industrial plants. In 2021 IEEE International Conference on Cyber
Security and Resilience (CSR) (pp. 267-272). IEEE. http://dx.doi.org/10.1109/CSR51186.2021.9527938

Patel, M., Prabhu, S. R., & Agrawal, A. K. (2021): Network Traffic Analysis for Real-Time Detection of Cyber
Attacks. In 2021 8th International Conference on Computing for Sustainable Global Development
(INDIACom) (pp. 642-646). IEEE. https://doi.org/10.1109/INDIACom51348.2021.00113.

Silvestre, A. B., & De Ocampo, J. R. D. (2023): Packet Sniffing in the Cyber Threat Landscape: Examining Wireshark
Capabilities, Misuse, and Policy Options in the Philippines. International Journal of Research and Innovation
in Social Science, 7(8), 778-786. https://dx.doi.org/10.47772/1JRISS.2023.7856

Tran, M. C., Nguyen, M. H., & Nguyen, T. Q. (2018): An application for monitoring and analysis of HTTP
communications. Journal of Communications, 13(8), 456-462. http://dx.doi.org/10.12720/jcm.13.8.456-462

(UARMS) 746

http://dx.doi.org/10.12720/jcm.13.8.456-462

