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1.0 Introduction

Rhotrices provide a rhomboidal generalization of matrices and offer an alternative framework for
representing algebraic structures beyond the classical rectangular setting. Since their introduction
by Ajibade[1] as an extension of the matrix concepts of tersions and noitrets introduced by
Atanassov and Shannon[2], rhotrices have attracted increasing attention as underlying objects for
algebraic investigation. In particular, several authors [3], [4], [5], [6] have demonstrated that rhotrix
sets, when equipped with suitable binary operations, give rise to rich algebraic systems analogous
to classical matrix groups.

Recent work by Mohammed and Okon[8] considered the collection of all invertible rhotrices of

size n over a field F , together with the row-column method of multiplication, and established a
general linear rhotrix group. This development naturally raises the question of whether important
subclasses of invertible rhotrices, analogous to those in classical matrix theory, can be isolated and
studied independently. One of such subclasses is formed by orthogonal rhotrix group.

Orthogonality introduces additional algebraic structure beyond invertibility. An orthogonal rhotrix

satisfies a defining relation of the form Mn
T ° Mn=In , which ensures that the inverse of an

orthogonal rhotrix coincides with its transpose. This property, familiar from classical orthogonal
matrices, leads to strong internal symmetry and motivates the study of orthogonal rhotrices as
distinct algebraic object rather than merely subset of the linear rhotrix group.

The present work is inspired by the classical relationship between matrix groups. In matrix theory,

the orthogonal group O(n)arises as a subgroup of the general linear group GLn F , while the special

orthogonal group SO(n) appears as a normal subgroup characterized as the kernel of the determinant

homomorphism. These groups play a central role in geometry, physics, and representation theory.
Our aim is to extend this well-established paradigm to the rhotrix setting and to examine how much
of the classical subgroup structure persists in the non-commutative rhotrix framework.

In this paper, we adopt the row-column method of rhotrix multiplication to study the algebraic
structure of the non-commutative orthogonal rhotrix group, denoted by ORn F . Rather than
focusing on general definitions, which are presented in the preliminaries section, we concentrate on
the structural properties of this group and its principal subgroups. In particular, we identify and
analyze the special orthogonal rhotrix group, the diagonal orthogonal rhotrix group, and the special
diagonal orthogonal rhotrix group, and we clarify their inclusion and intersection relationships.

The objectives of this paper are threefold: first, to establish rigorously that the set of orthogonal
rhotrices forms a group under the row-column multiplication; second, to characterize its key
subgroups and their internal relationships, including normality and intersection structure; and third,
to show that the orthogonal group embeds naturally as a subgroup of the general linear rhotrix
group. These results extend classical group-theoretical ideas to the rhotrix setting and provide a
foundational framework for further investigations into quotient structure, Lie-type rhotrix groups,
and potential applications in geometry and mathematical physics.

2.0 Prelimnaries

The following definitions provide the foundational framework for the discussion in the subsequent
sections.

2.1 Rhotrices

2.1.1 Definition of a Rhotrix

A rhotrix is a rhomboidal arrangement of the form
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( )h



 



  

Where α,β,h Ψ ,γ,δ∈R is a rhotrix. The entry at the centre of a rhotrix denoted by h Ψ is called
the heart.

2.2 Operations on Rhotrices

2.2.1 Addition of Rhotrices

The sum of two rhotrices Ψ and Φ was defined as

( ) ( )h h

 

   

 

     

( ) ( )h h

 

   

 



     



It was noted that addition is commutative.

2.2.2 Row-column Multiplication of Rhotrices

Using the row-column multiplication method of multiplication, a rhotrix Ψ of size n is decomposed

into an ordered pair of matrices aij and clk , corresponding to its major and minor entries

respectively. Hence Ψn= aij,clk =AttC(t−1)(t−1).

Ψn ° Φn= ai1j1,cl1k1 ° bi2j2,dl2k2

= i2j1
t ai1j1,bi2j2 , l2k1

t−1 (cl1k1,dl2k2∑ )∑

It should be noted that the row-column multiplication method is non-commutative but associative.
The identity element of a rhotrix of size n was also given as

In= Itt,I(t−1)(t−1)

1

0 1 0

0 1 0

0 1 0

1

    

    

    

An alternative method for rhotrix multiplication known as “heart-based multiplication” was
proposed in [1].

2.2.3 Determinant of Rhotrices

The determinant of an n-sized rhotrix is defined as:
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det (Ψn)= det aij,clk = det (Att). det (C(t−1)(t−1)) and

det (Ψn ° Φn)=det (Ψn) ° det (Φn)= det (Ψn) . det(Φn)

2.2.4 Inverse of Rhotrices

Invertibility of the rhotrix Ψn= aij,clk is guaranteed whenever its constituent matrices aij and clk
are invertible. Consequently, if Ψn

−1= qij,rlk , then qij and rlk are the inverse entries of matrices Att
and C(t−1)(t−1) respectively. Invertibility of Ψn is equivalent to the condition det(Ψn)≠0.

2.2.5 Transpose of Rhotrices

It was defined in [11] that for any rhotrix Ψn= aij,clk , its transpose Ψn
T= qji,rkl . Thus

(Ψn ° Φn)
T=(Φn)

T ° (Ψn)
T.

2.3 The Orthogonal Rhotrix Set.

Let F be a field. Let Rn(F) denotes the set of all rhotrices of size n with entries from F defined as

11

21 11 12

1 1 ,

( 1) ( 1)( 1) ( 1)

( ) :t tn ij lk

t t t t t t

tt

F F

a
a c a

a a a cR

a c a
a

   

 
 
 
     
        
     
 
 
 
  

,

where 1≤i, j≤t, 1≤l, k≤t−1;t=
1

2
(n+1) and n∈2Z++1.

The orthogonal rhotrix set denoted as ORn(F) is the collection of all rhotrices whose transpose
multiplied by themselves gives the identity rhotrix. The set:

ORn F ={Μn∈Rn F :Mn
TMn=In}

where:

∎ ORn(F) is the collection of orthogonal rhotrices with entries from F.

∎ Mn is the collection of all rhotrices of a fixed size n .

∎ Mn
T denotes the transpose of Mn, and

∎ In is the identity rhotrix of the same size.

3.0 The Non-commutative Orthogonal Rhotrix Group

In this section, we establish that the set of orthogonal rhotrices forms a group under the row-
column multiplication and examine its algebraic properties. Throughout this section, multiplication
of rhotrices is carried out using the row-column rule, which is the standard multiplication adopted
in rhotrix theory. In [10], it is stated that rhotrix multiplication under row-column method is not
commutative in general, that is

MnNn≠NnMn ∀Mn, Nn ∈ORn F
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Theorem 3.1

Let ORn(F) denote the set of orthogonal rhotrices and let ° denote the multiplication induced by the

row-column method. Then, the algebraic structure (ORn F , °) forms a non-commutative rhotrix

group of size n over F.

Proof

we shall show that the following group axioms are satisfied.

∎ Closure:

Let Mn, Nn ∈ORn(F). By definition of orthogonality,

Mn
T ° Mn=In and Nn

T ° Nn=In

Consider the product Mn° Nn . Using the properties of transpose under row-column multiplication,
we have

(Mn°Nn)
T ° Mn° Nn =Nn

T ° Mn
T ° Mn°Nn=Nn

T ° In°Nn= Nn
T ° Nn=In

Hence, Mn° Nn is orthogonal and therefore Mn° Nn∈ORn(F). Thus, ORn(F) is closed under “°".

∎ Associativity:

The row-column method of rhotrix multiplication is associative as shown in [10]. Hence, for all
Mn,Nn,Pn∈ORn(F):

Mn° Nn° Pn = Mn° Nn ° Pn

∎ Identity:

Let In denotes the identity rhotrix. Since In
T= In and In

T ° In=In.

It follows that In∈ORn(F) and In acts as identity element under "°"

∎ Inverse:

Let Mn∈ORn(F). Since Mn is orthogonal, we have

Mn
T ° Mn=In and Mn ° Mn

T= In

Thus, Mn
T is both a left and right inverse of Mn with respect to "°". Hence every element of ORn(F)

has an inverse in ORn(F) .

Having verified closure, associativity, identity and inverses, we conclude that (ORn F , °) is a
group.

3.1 Illustrative Example

The following example presents a finite set of explicitly given orthogonal rhotrices and uses a
Cayley table to illustrate the group operation under row-column multiplication.

Example 3.1

Let FOR5(Z2) denotes the finite set of orthogonal rhotrices of size 5 with entries from Z2 . Let us
denote the elements of FOR5(Z2) as follows:
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1 2 3

1 1 0

0 1 0 0 1 0 1 1 1

, ,0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

0 1 0 1 1 1 0 1 0

1 0 1

    

4 5 6

0 0 0

0 1 1 1 1 0 0 1 0

, ,1 0 0 0 0 0 0 0 0 1 1 0 1 0 1

0 1 1 1 1 0 0 1 0

0 0 0

    

The following Cayley table is provided solely for illustration of Theorem 3.1 and do not form part
of its proof.

Table 1: Cayley table illustrating the row-column multiplication of a finite set of orthogonal
rhotrices.

° Ψ1 Ψ2 Ψ3 Ψ4 Ψ5 Ψ6

Ψ1 Ψ1 Ψ2 Ψ3 Ψ4 Ψ5 Ψ6

Ψ2 Ψ2 Ψ1 Ψ4 Ψ3 Ψ6 Ψ5

Ψ3 Ψ3 Ψ5 Ψ1 Ψ6 Ψ2 Ψ4

Ψ4 Ψ4 Ψ6 Ψ2 Ψ5 Ψ1 Ψ3

Ψ5 Ψ5 Ψ3 Ψ6 Ψ1 Ψ4 Ψ2

Ψ6 Ψ6 Ψ4 Ψ5 Ψ2 Ψ3 Ψ1

The Cayley table confirms that the selected orthogonal rhotrices are closed under multiplication
and that inverses occur within this finite subset in agreement with Theorem 3.1.

It is known (see Mohammed and okon[7]) that the set of all invertible rhotrices of size n over a

field F, equipped with row-column multiplication, forms a group.

4.0 Embedding and Subgroup Structure of the Orthogonal Rhotrix Group

This section establishes the embedding of the orthogonal rhotrix group into the general linear
rhotrix group and examines the internal subgroup structure of the orthogonal rhotrix group.
Particular attention is given to special orthogonal, diagonal orthogonal, and special diagonal
orthogonal rhotrix subgroups, together with their inclusion and intersection relationships.

Lemma 4.1 (Invertibility of Orthogonal Rhotrices)

Every orthogonal rhotrix is invertible, and its inverse is given by its transpose.

Proof

Let Mn ∈ORn(F). By definition of orthogonality,
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Mn
T ° Mn=In and Mn° Mn

T =In

Hence, Mn possesses a two-sided inverse in ∈ORn(F) , namely Mn
T . Therefore, every orthogonal

rhotrix is invertible.

Theorem 4.1 (Embedding Theorem)

The orthogonal rhotrix group ORn F , ° embeds as a subgroup of the general linear rhotrix group

GRn F , ° .

Proof

By Lemma 3.1, every orthogonal rhotrix is invertible. Hence

ORn(F)⊆GRn F

We define ∝: ORn F , ° → GRn F , ° by ∝ Mn = Mn for all Mn∈ORn(F).

We show that ∝ is injective homomorphism.

Homomorphism.

For any Mn, Nn ∈ORn(F), Then

∝ Mn° Nn =Mn° Nn= ∝ Mn °∝(Nn).

Injectivity.

Suppose ∝ Mn = ∝(Nn). Then Mn= Nn, and hence ker(∝)=In. Therefore, ∝ is injective.

Since ∝ is an injective homomorphism, it follows that ORn(F) embeds as a subgroup of GRn F .

4.1 A General Subgroup Criterion

To avoid repetitive subgroup proofs, we establish general result.

Proposition 4.1

Let H⊆ORn(F) be a non-empty subset such that:

∎ H is closed under row-column multiplication and

∎ H is closed under transpose.

Then H is a subgroup of ORn(F).

Proof

Let Mn∈H. SinceMn ∈ORn(F), orthogonality impliesMn
−1=Mn

T.

By assumption, Mn
T∈H, hence H contains inverses. Closure under multiplication is given, and

associativity is inherited from ORn(F). Therefore, H is a subgroup of ORn(F).

Definition 4.1 (Diagonal Orthogonal Rhotrix)

A diagonal orthogonal rhotrix over a field F is a rhotrix of size n that is vertically diagonal (that is,

all its off-diagonal entries are zero) and orthogonal, with each diagonal entry equal to either 1or −1.

It is denoted by DORn(F). Thus:
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 

11

11

( 1((t 1)

0 0

0 0 : , 1, 1

0 0

n ij lk

t

tt

DO

a
c

a cR

c
a
 

 
 
 
     
          
     
 
 
 
  

Since the set of diagonal orthogonal rhotrices is closed under the multiplication and transpose, it

follows Proposition 4.1 that DORn(F) is a subgroup of ORn(F) . Morerover, diagonal rhotrices

commute under row-column multiplication; therefore, DORn(F) is an abelian subgroup of ORn(F).

Definition 4.2 (Special Orthogonal Rhotrix Group)

Special orthogonal rhotrix SORn(F) is defined to be subset of ORn(F) consisting of those

orthogonal rhotrices whose determinant equals 1. Thus

SORn F = Mn∈ORn F : det Mn =1

Proposition 4.2 (Determinant Homomorphism)

Let det: GRn F →FX denote the determinant map on the general linear rhotrix group. Then the
restriction

det: ORn F →FX

Proof

Let Mn, Nn ∈ORn(F). By the multiplicativity of the rhotrix determinant,

det Mn° Nn = det(Mn) det( Nn)

Lemma 4.2 (Determinant of Orthogonal Rhotrices)

If Mn∈ORn(F), then det(Mn)
2=1. In particular,

det Mn ∈ 1, −1 .

Proof

Mn
T ° Mn=In

det(Mn
T) det(Mn)= det(In)= 1

Theorem 4.2 (Characterization of the Special Orthogonal Rhotrix Group)

The special orthogonal rhotrix group is precisely the kernel of the determinant homomorphism on
ORn(F), that is,

SORn F =ker (det | ORn(F))

Proof

By definition, ker (det | ORn F ) = Mn∈ORn F : det Mn =1

Hence,

SORn F = ker (det | ORn F )
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Corollary 4.1

The special orthogonal rhotrix group is a normal subgroup of the orthogonal rhotrix group :

SORn F ⊴ ORn(F)

Reason: Kernel of homomorphism are normal

Definition 4.3 (Special Diagonal Orthogonal Rhotrix)

A special diagonal orthogonal rhotrix over a field F is a rhotrix size n that is diagonal, orthogonal

and has determinant equals 1. It is denoted as SDORn(F). Thus

SDORn F ={An∈DORn F : det An =1}

Since the set of special diagonals orthogonal rhotrices is closed under multiplication and transpose,
proposition 4.1 applies. It is also abelian since it is contained in the abelian group DORn(F).

4.2 (Subgroup Relationship)

The subgroup relationship may be summarized as:

Special diagonal orthogonal rhotrix group ⊆ Special orthogonal rhotrix group⊆ Orthogonal
rhotrix group.

Special diagonal orthogonal rhotrix group ⊆ Diagonal orthogonal rhotrix group ⊆ Orthogonal
rhotrix group.

Proposition 4.3 (Intersection Characterization)

The special diagonal orthogonal rhotrix group is the intersection of the special orthogonal rhotrix
group and the diagonal orthogonal rhotrix group. Thus:

SDORn F = SORn F ∩ DORn F

Proof

Let Mn∈ SDORn F . Then Mn is diagonal, orthogonal, and satisfies det Mn =1 . Hence, Mn∈

DORn F and Mn∈ SORn F , implying:

Mn ∈ SORn F ∩ DORn F

Conversely,

Let Mn∈ SORn F ∩ DORn F . Then, Mn is diagonal and orthogonal, and det (Mn)=1. By definition

Mn∈ SDORn F .

Therefore,

SDORn F = SORn F ∩ DORn F

Corollary 4.1 (Structural Properties)

∎ SORn F is a normal subgroup of ORn F

∎ DORn F is an abelian subgroup of ORn F

∎ SDORn F is an abelian subgroup of ORn F

Proof

∎ SORn F is the kernel of a homomorphism, hence it is normal.

∎ DORn F commute under row-column multiplication

∎ SDORn F ⊆ DORn F ; thus, it is abelian.
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4.3 Subgroup Lattice Diagram

These subgroup relationships induce a natural lattice structure among the orthogonal rhotrix
subgroups.

GRn F

ORn F

SDORn F DORn F

SDORn F

Fig 1:Subgroup lattice showing inclusion relationships among the orthogonal rhotrix group and its
distinguished subgroups.

The figure shows the subgroup lattice of the orthogonal rhotrix group ORn F , showing the

inclusion and intersection relationships among the special orthogonal rhotrix group SORn F , the

diagonal orthogonal rhotrix group DORn F , and the special diagonal orthogonal rhotrix group

SDORn F .

4.0 Conclusion

This work establishes the non-commutative orthogonal rhotrix group as a well-defined algebraic
structure under row-column multiplication and situates it naturally within the general linear rhotrix
group via an explicit embedding. The identification of special orthogonal, diagonal orthogonal, and
special diagonal orthogonal rhotrix subgroups, together with their inclusion and intersection
relationships, reveals internal lattice structure analogous to that of the classical orthogonal group,
while reflecting the distinctive non-commutative nature of rhotrices.

Beyond confirming group theoretical properties, the embedding and kernel characterizations clarify
how orthogonality constraints interact with invertibility in the rhotrix setting. In particular, viewing
the special orthogonal rhotrix group as the kernel of the determinant homomorphism highlights a
fundamental structural parallel with classical matrix groups, thereby strengthening the conceptual
foundation of orthogonal rhotrix theory.

These results open several natural directions for future research. The established subgroup and
kernel structures provide a basis for studying quotient rhotrix groups and their algebraic properties.
Further work may also investigate Lie-type rhotrix groups, representation theory and possible
application to geometry and physics, where orthogonality-preserving transformation play a central
role.
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